APPLICATION OF THE METHOD OF SPATIAL
CHARACTERISTICS TO THE SOLUTION OF AXIALLY
SYMMETRIC PROBLEMS RELATING TO THE PROPAGATION
OF ELASTIC WAVES
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We present a difference scheme, based on the method of spatial characteristics, for solving
axially symmetric dynamical problems of the theory of elasticity. Consideration is given
to the possibility of solving a Cauchy problem and a problem for a solid or a hollow cylin~-
der which takes boundary conditions into account. It is suggested that linear problems may
be solved by this method. An example is given in which the parameters characterizing the
stress~deformation state of a semiinfinite cylinder are calculated, the points of the end of
the eylinder being given an initial axial velocity. The calculation of these parameters was
carried out on the BESM-6 computer.

In [1] a finite-difference method was used to treat the initial stage of the impact involving the axially
symmetric elastic collision of two circular plates made of the same material. The set of dynamical equa-
tions, written in terms of displacements, was integrated up to the time instant at which the distance trav-
elled by the longitudinal wave is less than a tenth of the plate diameter.

An analytical treatment was given in [2] of the problem involving the collision of two elastic eylin-
ders in which Laplace integral transforms in the time and Fourier transforms in the space coordinate
were used. Inversion of the resulting transforms was accomplished for large values of the transform pa-
rameters, which corresponds to the construction of an asymptotic solution valid for small time intervals
following the instant of impact. No numerical analysis of the results obtained was given.

D. S. Butler presented in [3] a numerical scheme for solving a hyperbolic system of equations de-
pending on three variables.

A difference scheme applicable to the planar two-dimensional problem of the dynamic theory of elas-
ticity, based on the method of spatial characteristics, was presented in [4] to solve a Cauchy problem.

The dynamics of elastoplastic waves for a
sectorial ring was presented by the author in [5]
using a finite difference method. Distributions
were given for the radial and circumferential com-
ponents of the stress.

e In [6] the method of spatial characteristics
was used to study the planar two-dimensional
problem concerning propagation and diffraction of
elastic waves in a halfstrip of finite width. Cal-
culations of the kinematic and dynamic character-
istics of the elastic field were presented in graph-
ical form.
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We present below a general scheme for the spatial characteristics method applicable to axially sym-~
metric problems of the dynamic linear theory of elasticity.

1. Method of Solution. In an r, z, § system of cylindrical coordinates the equations of motion for the
spatial axially symmetric case may be written, in the usual notation, as follows:

ds ligd s, —G d%u
T rz rr LI T
ar + 0z r =P3p-
lizd as T 0%u
rZ zz rz z
T e T =Pm (L.0)

To the Egs. (1.1) there must be adjoined the Hooke's Law relations
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(1.2)
0=

in which uy (r, z, t) and uy (v, z, t) denote, respectively, the r and z components of the elastic displacement
vector and A and p are the Lamé parameters.

We now transform the set of Egs. (1.1) and (1.2) so that the functions appearing in the transformed
system will have a direct physical meaning. We accomplish this by differentiating Hooke's Law with re~
spect to the time after adding and subtracting expressions for the stresses oy, and oy,.

Proceeding in this way and then introducing independent variables and functions through the relations

o= Grrzp_a:ua ‘e :;;, ngg_’ u° (r°, 2°, 1) = a1 Z’;r
v (%, 2 ) = at 2ot a=l/§Tp_2u‘, b=y L (1.3)
T=3>1

we rewrite Eqs. {1.1) and (1.2) in the following equivalent form (the lower subscript denotes partial dif-
ferentiation):

Ut—Pr—q¢p—T,=(p+q—0)/r
vl'—pz"l"Qz—‘Tr:‘;'
PR =Dt —u—v, =1 —=2) (Y = 1) u/r
T’ —u, +v,=0 (1.4)
-1 —u, —v, =1 (1 —2) u/r
71, —u, —v, =0

We thus obtain a system of six first order equations, with variable coefficients, in the six unknown
functions u, v, p, 4, o, and 7; here and in what follows the degree sign superscript on the independent and
dependent variables will be omitted for simplicity. The system (1.4) depends on one material parameter 7.

We make the following transformation in order that the system (1.4) takes on a symmetric form. We
replace the fifth equation by the difference between the fifth and third equations. From the latter we de-
termine u/r and substitute it into the third equation. The matrix of the resulting system is symmetric
with respect to t, v, z:

Uy —Pr—Gr—T,=1"{p+q—0)
Ut—pz_l_QZ_Tr:r_lT
e -4+ 1R (-4 e —u,—v, =0
7% —u,+v, =0 (1.5)
rPR—E—4) I+ - @ — 4 e =1

7t — U, —v, =0

The surface & (r, z, t) =const will be a characteristic surface of the system (1.5) if it satisfies the
following differential equations

[@F — OF — D] [D2 — (D2 + D) 2|0 (P —2)7 =0 (1.6)
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Equation (1.8) yields two families of circular cones, the tangents of whose half angles, formed with
the t axis, are, respectively, 1 and 1/y. The equation ;=0 yields the cone axes [4]. The geometry of the
cones is shown in Fig. la.

Following standard procedure we obtain two relations for the external and internal cones, respectively:

cos @ du + sin adv 4 dp + cos 2adg + sin 2adt = —S, (@) dt
— sin @ du + cos adv — v sin 2adg + v cos 2adt = —S, (@) dt (1.7
Sy (@) = (2y~* — 1) sin?® au, + (2-1 — y-2) sin 2au, 4+ (2! — y-?)
xsin 20y, + (2y~* — 1) cos® av, — 2 sin® & cos @ ¢, + 2 cos? a sin ag,

+ sin « cos 2at, — cos & cos 2at, — cos a p+qg—0)rt —sinarrt — (1—2y-2) ur-t (1.8)
Sy (@) = 2-%y~T sin 2qu, — y-Lcos® @ u, + y-* sin? av, — 2-Ty-1

X sin 20, 4 sin ap, — cos ap, — cos 2a sin ag,. + cos 2a ¢os & g,
—2sin? a cos a1, + 2 cos? « sin « T, +sina(p + g — o) r-f — cos atr-

In the Egs. {1.6) and (1.8) @ (0=« =27) denotes an arbitrary parameter.

We show now how it is possible to solve a Cauchy problem for the system (1.5), i.e., how it is pos-
sible to determine all six functions at the point O, knowing them at an arbitrary point of the plane t=0 (the
plane of values of the initial data). We integrate Egs. (1.7) and (1.8) along an arbitrary generator (2 bi~
characteristic) of each cone from the point O to its intersection with the rz-plane (the position of the gen-
erator on the circular cones is fixed by assigning the parameter o, for example, @ =a;3)

8u cos a; - Sv sin @; + 8p + 8¢ cos 2a; + 87 sin 2a; = —Y, B[S, () + Sy (Aol — Wy (@) + O (B (1.9)

—8u sin a; -+ 8v cos a; — Bg y sin 20 + Sty cos 20 = —ok [S, (a); +S; (@)ol — W, () -+ O (A9) (1.10)
where for brevity we have introduced the notation
Wy (o) = (& — ug) cos a; + (v — »;) sina; + (p" — pi) + (¢ — ¢3) cos 2a; + (v' — 1) sin 20
Wola) = — (0 — w)sin a; + (v — v;) cos o, — v (¢ — g;) sin 2a;+ (7" — 7;) y cos 20

In Egs. (1.9) and (1.10) k denotes the time step k=At=00'; the subscript i means that the corre-
sponding function is calculated at the point where the bicharacteristic @=aj of the internal and external
cone intersects the plane of the initial data, t=0; the subscript 0 identifies the value of the function at the
point O, the prime means that the function is calculated at the point Of, du is the increment ug-u', ete.

We integrate the initial set of Egs. (1.5) along a cone axis. We then obtain, using, for example, the -
first equation,

du =1k [(pr+ 4+ ¥+ 1P+ g =)o + (Pr+ ¢ + T+ 7+ 0 — )1+ 0 (57) (L.11)
and five similar equations.

In Egs. (1.9) and (1.10), for the sake of convenience, we take the values of ¢; equal to 0, 7/2, 7, and
371/2, thereby fixing four bicharacteristics on the internal and external cones. As a result, we obtain a set
of eight linear algebraic equations, which when supplemented by six relations of the type (1.11) yields a
set of fourteen equations. We must eliminate from this system the derivatives of the six functions at the
point O at which they are unknown.
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A difference scheme, suitable for use on an electronic digital computer, can be obtained in the fol-
lowing way. We denote the relations obtained for the external cone by using Eq. (1.9) on the four bichar-
acteristics @j=0, 7/2, m, 31/2 by the digits 1, 2, 3, and 4, respectively. The relations obtained for the in-
ternal cone using Eq. (1.10) with these same ¢; values will be denoted by the digits 5, 6, 7, and 8, respec—
tively. Subtracting relation 6 from relation 8, we obtain

260 = — sk, (- ) — W[ ) 1,kS, (_}) +Ws (% |+ k12 (py + gr -+ 7 (P + 2 — Do (1.12)
By subtracting relation (3) from relation (1) we obtain

20U — — - 8,(0)i— W, (0) + A S1 (1) + Wy(m) + 52T+ (p+ =)o (1.13)

From the relations (1.12) and (1.13) we obtain the derivatives Ypk (py+aqy)o and Yk (15)0 at the point
O, which makes it possible to eliminate them from the right side of Eq. (1.11). Similarly we can eliminate
the derivatives in the other five equations of the type (1.11), obtaining thereby a set of difference equations
for determining the six unknown functions u, v, p, 4, o, and T at the point O

Bu— o p g S5 — g by = ST Bk (p g, )
o — bt — B Ny (p,— g, T
B b (=D — = BTy ka2
pog = U=t nTn e L, — vy

P —1) (Br — 4 o 12— 1) (31 — 4)0p — o bu = kru’

bi—bs - bs—b ,
por= 2R Eh Tl e, +0,)

where

— HekSy (i) — W), by = —1/pkS, ()i — Wy (o)
a=(@G—1n/2, i=1,234

The set of six equations (1.14) enables us to express the six functions at the point O in terms of the
initial values of these functions and their derivatives, given at the point O! of the initial data plane and at
eight neighboring points of this plane. By displacing the point O' in the plane t=0 it is possible to obtain
the values of the functions in a plane parallel to the plane t=0 and formed by the vertices of the circular
characteristics of the cones. This plane is at a distance of k=At from the initial data plane. Proceeding
further in a similar way and choosing At, Ar, and Az sufficiently small, we can obtain all six functions in-
volved in an axially symmetric problem of the linear dynamic theory of elasticity for all r, z, and t.

In concluding this section we remark that the system (1.14) reduces to a coupled system in five in-
crements for the functions w, p, v, 4, and 7, which differs from the case of a two-dimensional problem by
terms of order k/r. The increment for ¢ is a linear combination of the increments for p and u.

2. Impact on the Endface of a Semiinfinite Cylinder. We assume that a semiinfinite circular elastic
cylinder of radius h (composed of 2 homogeneous and isotropic material) is subjected at time t=0 at points
of its endface to a known action (Fig. 1b). The problem to be investigated is that of determining the pa-
rameters of the stress-deformation state in the domain 0 <r=h, z=0 for t>0, assuming that the speed of
the longitudinal wave is equal to a, the speed of the transverse wave is equal to b, and the material density
is p.
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In dimensionless form the boundary-value problem reduces to integrating over the domain 0=r=1,
0=z< =, t>0 the system of Egs. (1.5) for the zero initial data

U=v=p=q=0=T=U=0=p=q=06="T1=0 fo <0 (2.1)
and the following boundary conditions:

pPtg=0 1T=0 for r=1, 0<z< o0, £>0 (2.2)
v=1v,(f), u=0 for z=0, 0<Cr<C1, £t>0 (2.9

where v, (t) is an arbitrarily prescribed function. Initially the cylinder is in an undistrubed state, its lat~-
eral surface is stress-free, and the particle velocity vector is preseribed at its end-face (other types of
conditions can also be prescribed). We solve this problem numerically, the method used being essentially
that of Section 1.

The system (1.14) allows us to make calculations at an arbitrary interior point of the cylinder. At
boundary points it cannot be used directly since some of the bicharacteristics pass outside the domain in
question and intersect the initial data plane t=0 at points where the solution is not defined. At the endface
z=0, 0=<r=1, the terms a,, by, appearing in Egs. (1.14), may be determined in terms of points located to
the left of the plane z=0. Eliminating a,b, from Egs. (1.14), we obtain a set of four equations in the six in-
crements; however, when these equations are supplemented by the boundary conditions (2.3), the resulting
system becomes a closed system, solvable at an arbitrary point of the endface, not an angular point. -

We integrated the initial set of equations with an accuracy to 0 (k3. If the set of Eqgs. (1.14) is writ-
ten out in detail, it is possible to obtain expressions of the following types:

Fock,2) —f@r—ck, 2) (2.4)
flr+ckyz) + f(r —ck,2) — 2f (r,2)
klfu(r, 2+ ck) — f. (r, 2 — ck)]
k[fr (rs Z‘{'Ck)"‘fr(r’Z—Ck)_zfr(r’ Z)]

where ¢=1 and 1/y for the internal and external cones, respectively. Expansion of the function f in a Tay-
lor's series in a neighborhood of the point (r, z) shows that the expressions (2.4) differ, respectively, from
the following quantities by terms of order O (k%):

2kfy (ry 2), (k) frr (ry 2), 20K% fpy (v, 2), O (2.5)

The necessary accuracy will have been attained when the difference approximation for the first and
second partial derivatives at the point (r, z) is of order O (k) and O (k), respectively. For interior points
of the domain it is convenient to use central differences; for boundary points, — forward and backward dif-
ference approximations. After the transformations guaranteeing an accuracy of order 0(k3) have been
made, it is convenient to rewrite the system (1.14) in the following form:

k koo k k2 _ k2 -
6“——2;'513—{-2—;(56—*2769: 5 (=1 v + 5 (W + 7 Uz)
et =2k (BRI 4k (p, g, )

: bt = "kzi(i _T—z)urz +-,;(vzz+’l’—2”r})+-;(1—2’f_z) Uy +r£‘r, +k(pz—QZ+Tr)

o — -

P —1)1ép— (¥ —2) (v — 1)“—2’% du = —'g— 2%+ Poz 4 Prr + Grr — 922)
R 40) +h P —2) (= D) (g g =) + o,

- 2

s k? k2 K
".1'20‘7: T(prr+qrr—pzz+QZz) +k(ur —vz) —I"'Q‘r"(pr‘{“qr—dr)—z—

r
P — 1) (31 — & 12 (2 — 1) (Y — 4)10p — o bu = S

1% = S 2y A Tor + T2) TR (0 0)) o (T F P 3 —5)

At an arbitrary point of the endface z=0, 0=r <1, not an angular point, calculations are made using
the system of equations

Ty

[+ () e =910 — 7 tu— 5 (P —A)Lop — 5 b
T (5 267 — O (P — )W = (=),
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+ i;i W + 277 0r + Y7 n) R (D, + 00 + T F AT (0.t u,)
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F g Pt =0+ ) e (=2 R E ) ()
TP —A)28p — (v2 — 2) (1 — 1) g 8+ 1289 = K (g -+ Prr -+ rr)
(D g 0) (12— 2) (1 — )+ 2,
—%ﬁu +PE -V -9+ - 1) B — 4% = riu

In an analogous way we can obtain a solvable system of equations for calculating conditions at points
of the free surface r=1, 0=z <«. This system can be obtained by eliminating the values ¢ and b; from
the system (1.14) and appending the boundary conditions for r=1, z>0.

For the angular point r=1, z=0 the system (1.14) may be solved by eliminating a4, by, a4, by (since
the corresponding cones pass outside the domain in question) and adjoining the boundary conditions at the
lateral surface r=1 and on the endface z=0.

We obtain, as a result, the set of two equations
— g S (2 — %) (B — A Lop L 2 (1 — 1) (B — 4) L = £y

=@ =)t 8w —& — [+ — 1) op — 28
g Sot (T )0t = — B (1) e —v) — - 25— 2r7ip,,)
+%(1 —2]/_2)(“}—‘”2) +k(pr+Qr+Tz)-k(pz"‘Qz+rr)

o I (4 0) =k v ) - (b g — o) — (2 = 2) (v — 1)1

kB — P — 10+ 0 — 5 .
r *3;(1%%'%'“%—'1"]7:—7 QZ—I'T_Gz)‘_z}‘(Tz_‘T Tr)

to which must be adjoined the boundary conditions for r=1 and z=0. As a result we obtain a system of six
equations for determining the six increments at the angular point.

The calculational procedure for a hollow cylinder also requires setting up the equations for an angu~
lar point at a free internal surface; this is done in 2 manner analogous to that described above. The sys-
tem of equations in this case does not contain singularities for r—0.

In the case of a solid cylinder, the Egs. (1.5) contain terms with the factor 1/r; however, when r=0,
the numerator in these terms is also equal to zero since u and 7 are odd functions of r and since Oppr = Gy
for p+ g—oji.e., these terms have an indeterminacy of the form 0/0. Resolution of this indeterminacy by
1'Hopital's rule yields a limit of zero, since the derivative with respect to r of the functions p, q, and ¢
vanishes as r— 0; this latter follows from the fact that each of these functions is an even function of r and
has a continuous derivative with respect to r in a neighborhood of the point r=0.

From physical considerations it follows that on the axis r=0 the system of equations for the plapnar
problem and the system of equations for the axially symmetric problem must give the same solution. One
can show that the limit of the functions u, and 7, as r—=0 is also equal to zero; by the same token, it may
be assumed that the indeterminacy in Egs. (1.5) is of a purely mathematical nature.

We present an example of the calculations. Using the method described above, we integrated the set
of Egs. (1.5), subject to the conditions (2.1)-(2.3), for the following values of the initial data;
Yy = 1.87, 9 (t) = te-! for t >0,
Ar = Az = 0.025, At = 0.0125, At/Ar = 0.5
Some of the calculated results are displayed graphically in Figs. 2-5. Variation of the particle ve-
locities u (solid curves) and v (dashed curves) with the time at the four fixed points with the coordinates
(r=0.1, z=0.1), (r=0.9, z=0.1), (r=0.1, z=0.5), (r=0.9, z=0.5) is shown in Fig. 2 (curves 1, 2, 3, 4, re-
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spectively). The lower index denotes the coordinate r, the upper the coordinate z. The values of the trans-
verse veloeity u at the points 2 and 4 are of an order larger than the analogous values at the points 1 and
3; this may be explained by the proximity of the latter points to the axis where the motion is quasi-one-
dimensional. The transverse and longitudinal velocities at the point 4 are of the same order.

The stresses p (dashed curves) and ¢ (solid curves) at these same points are shown in Fig. 3, where
it is evident that p and ¢ at the points 1 and 3 are approximately twice as large as the stresses at the points
2 and 4. Variation of the stresses q (dashed curves) and T (solid curves) with time at the fixed points is
shown in Fig. 4. The influence of the diffracting waves is evident graphically on the curve for 7 at the point
4, the influence of diffraction at the point 3 is insignificant owing to wave interference.

In Fig. 5 velocity profiles are given for u (dashed curves) and v (solid curves) for (r, t) valuesgiven,
respectively, by (1.0, 1.0), (1.0, 2.0), (0.8, 1.0) and (0.8, 2.0) (curves 1, 2, 3, 4 on the figure).

The values of the velocities at the cross-sections indicated are comparable among themselves and
the nature of their variation can be determined to a significant degree by the boundary conditions at the
endface with the phenomenon of diffraction taken into account.

When the results of these calculations are compared with analogous results for the planar problem
(a half strip with assigned velocities at its end), a qualitative agreement is found to exist between the basic
parameters of the stress-deformation states for the semiinfinite circular cylinder and the half strip.
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